Mammalian NET-Seq Reveals Genome-wide Nascent Transcription Coupled to RNA Processing

نویسندگان

  • Takayuki Nojima
  • Tomás Gomes
  • Ana Rita Fialho Grosso
  • Hiroshi Kimura
  • Michael J. Dye
  • Somdutta Dhir
  • Maria Carmo-Fonseca
  • Nicholas J. Proudfoot
چکیده

Transcription is a highly dynamic process. Consequently, we have developed native elongating transcript sequencing technology for mammalian chromatin (mNET-seq), which generates single-nucleotide resolution, nascent transcription profiles. Nascent RNA was detected in the active site of RNA polymerase II (Pol II) along with associated RNA processing intermediates. In particular, we detected 5'splice site cleavage by the spliceosome, showing that cleaved upstream exon transcripts are associated with Pol II CTD phosphorylated on the serine 5 position (S5P), which is accumulated over downstream exons. Also, depletion of termination factors substantially reduces Pol II pausing at gene ends, leading to termination defects. Notably, termination factors play an additional promoter role by restricting non-productive RNA synthesis in a Pol II CTD S2P-specific manner. Our results suggest that CTD phosphorylation patterns established for yeast transcription are significantly different in mammals. Taken together, mNET-seq provides dynamic and detailed snapshots of the complex events underlying transcription in mammals.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nascent-Seq reveals novel features of mouse circadian transcriptional regulation

A substantial fraction of the metazoan transcriptome undergoes circadian oscillations in many cells and tissues. Based on the transcription feedback loops important for circadian timekeeping, it is commonly assumed that this mRNA cycling reflects widespread transcriptional regulation. To address this issue, we directly measured the circadian dynamics of mouse liver transcription using Nascent-S...

متن کامل

Identifying transcription start sites and active enhancer elements using BruUV-seq

BruUV-seq utilizes UV light to introduce transcription-blocking DNA lesions randomly in the genome prior to bromouridine-labeling and deep sequencing of nascent RNA. By inhibiting transcription elongation, but not initiation, pre-treatment with UV light leads to a redistribution of transcription reads resulting in the enhancement of nascent RNA signal towards the 5'-end of genes promoting the i...

متن کامل

Distinctive Patterns of Transcription and RNA Processing for Human lincRNAs

Numerous long intervening noncoding RNAs (lincRNAs) are generated from the mammalian genome by RNA polymerase II (Pol II) transcription. Although multiple functions have been ascribed to lincRNAs, their synthesis and turnover remain poorly characterized. Here, we define systematic differences in transcription and RNA processing between protein-coding and lincRNA genes in human HeLa cells. This ...

متن کامل

Native elongating transcript sequencing (NET-seq).

Advances in sequencing technology have led to the development of many high-resolution methodologies that observe genomic activity and gene expression. This unit describes such an approach, native elongating transcript sequencing (NET-seq), which reveals the density of RNA polymerase across the Saccharomyces cerevisiae genome with single-nucleotide resolution. A procedure for capturing nascent R...

متن کامل

Pervasive, Genome-Wide Transcription in the Organelle Genomes of Diverse Plastid-Bearing Protists

Organelle genomes are among the most sequenced kinds of chromosome. This is largely because they are small and widely used in molecular studies, but also because next-generation sequencing technologies made sequencing easier, faster, and cheaper. However, studies of organelle RNA have not kept pace with those of DNA, despite huge amounts of freely available eukaryotic RNA-sequencing (RNA-seq) d...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 161  شماره 

صفحات  -

تاریخ انتشار 2015